Data Selection via Optimal Control for Language Models

Yuxian Gu^{1,2}, Li Dong², Hongning Wang¹, Yaru Hao²,
Qingxiu Dong², Minlie Huang¹, Furu Wei²

¹The CoAl Group, Tsinghua University

²Microsoft Research

Data challenges for pre-training LMs

Large amount of data makes pre-training quite inefficient.

Data challenges for pre-training LMs

High-quality pre-training data is running out.

Models consume faster than humans produce.

Possible Solution: Data Selection?

- Select a Pre-Training Corpus Subset for Better Target Performance
 - ◆ Target: Math, Code, High-Quality Instruction, etc...

Challenges for Data Selection

Current data selection/filtering is heuristic-based and tricky task.

Overview

Data challenges for pre-training LMs

- Large amount of data makes pre-training quite inefficient.
- High-quality pre-training data is running out.
- Data selection/cleaning is a heuristic-based tricky task.

PDS: Data Selection via Optimal Control for Pre-Training

Theorem 2.1: PMP Conditions for Data Selection

$$egin{aligned} egin{aligned} oldsymbol{ heta}_{t+1}^* &= oldsymbol{ heta}_t^* - \eta
abla L(oldsymbol{ heta}_t^*, oldsymbol{\gamma}^*), & oldsymbol{ heta}_0^* &= oldsymbol{ heta}_0, \ oldsymbol{\lambda}_t^* &= oldsymbol{\lambda}_{t+1}^* +
abla J(oldsymbol{ heta}_t^*) - \eta
abla^2 L(oldsymbol{ heta}_t^*, oldsymbol{\gamma}^*) oldsymbol{\lambda}_{t+1}^*, \ oldsymbol{\gamma}^* &= rg \max_{oldsymbol{\gamma}} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} oldsymbol{\lambda}_{t+1}^*
abla D(x_n, oldsymbol{ heta}_t^*) \right], \end{aligned}$$

2x acceleration

Improvement on limited data

Formulate Data Selection

Optimize the data selection strategy for lower downstream loss

y: indicates a sample is selected or not

Training on the Selected Data

 \odot Loss: Treat the γ as the weights of the instance losses:

$$L(\boldsymbol{\theta}, \boldsymbol{\gamma}) = \sum_{n=1}^{|\mathcal{D}|} \gamma_n l(x_n, \boldsymbol{\theta})$$
 $\gamma_n = 1$: $l(x_n, \boldsymbol{\theta})$ is selected $\gamma_n = 0$: $l(x_n, \boldsymbol{\theta})$ is ignored

• The model is trained with:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \nabla L(\boldsymbol{\theta}_t, \boldsymbol{\gamma})$$

Target to Optimize

- $J(\theta_t)$: downstream loss to minimize (like on math, code, etc.)
- Minimizing the Aera Under the Loss curve (AUC)
 - ◆ AUC is directly related to the Scaling Law constants (see Appendix A in our paper)
 - Optimizing AUC is improving the Scaling Law!

$$egin{aligned} \min_{m{\gamma}} & \sum_{t=1}^T J(m{ heta}_t), \ & ext{s.t.} & m{ heta}_{t+1} = m{ heta}_t - \eta
abla L(m{ heta}_t, m{\gamma}) \end{aligned}$$

Target to Optimize

- $J(\theta_t)$: downstream loss to minimize (like on math, code, etc.)
- Minimizing the Aera Under the Loss curve (AUC)
 - AUC is directly related to the Scaling Law constants (see Appendix A in our paper)
 - Optimizing AUC is improving the Scaling Law!

$$egin{array}{ll} \min_{m{\gamma}} & \sum_{t=1}^T J(m{ heta}_t), \ & ext{s.t.} & m{ heta}_{t+1} = m{ heta}_t - \eta
abla L(m{ heta}_t, m{\gamma}). \end{array}$$

Hard to solve? Optimal Control!

Data Selection as a Control Problem

Original Problem: Optimize the data selection strategy

y: indicates a sample is selected or not

Data Selection as a Control Problem

- Analogy: Optimizing <u>fuel use</u> when flying a rocket
 - Data is the "fuel" in pre-training language models

Mathematical Equivalence to Optimal Control

Data Selection for LMs

Fuel Use Optimization

	Conventional Data Selection Optimal Data Selection Training Steps	$F(u_t)$ mg	
Control Variable	Selection Strategy: γ	Fuel Consumption: u_t	
Objective	Minimal AUC: $\min_{\gamma} \sum_{t=1}^{T} J(\boldsymbol{\theta}_t)$,	Maximize Distance: $\max_{\mathbf{u}_t} x = \sum_{t=0}^{T} v_t \Delta t$	
Constraints	Regularity: $\gamma \in U$.	Constant Total Fuel: $\sum_{t=0}^{T} u_t = U$	
Dynamics	Gradient decent: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta abla L(oldsymbol{ heta}_t, oldsymbol{\gamma})$	Newton's Law: $\frac{v_{t+\Delta t} - v_t}{\Delta t} = -mg + F(u_t)$	

Solving the Problem

- Pontryagin's Maximum Principle (PMP)
 - Gives <u>necessary conditions</u> for the optimality of the problem

$$\min_{oldsymbol{\gamma}} \sum_{t=1}^{T} J(oldsymbol{ heta}_t),$$

s.t.
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \nabla L(\boldsymbol{\theta}_t, \boldsymbol{\gamma})$$

$$L(\boldsymbol{ heta}, \boldsymbol{\gamma}) = \sum_{n=1}^{|\mathcal{D}|} \gamma_n l(x_n, \boldsymbol{ heta})$$

Lev Pontryagin, 1908 - 1988

Conditions for Optimal Data Selection

Theorem 2.1 (PMP Conditions for Data Selection).

$$\begin{cases} \text{#1 } \boldsymbol{\theta}_{t+1}^* = \boldsymbol{\theta}_t^* - \eta \nabla L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*), \\ \text{#2 } \boldsymbol{\lambda}_t^* = \boldsymbol{\lambda}_{t+1}^* + \nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^*, \\ \text{#3 } \boldsymbol{\gamma}^* = \arg\max_{\boldsymbol{\gamma}} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \top \nabla l(x_n, \boldsymbol{\theta}_t^*) \right] \end{cases}$$

We can get the optimal data score γ^* here!

#1: Learning Condition

$$oldsymbol{ heta_{t+1}^*} = oldsymbol{ heta_t^*} - \eta
abla L(oldsymbol{ heta_t^*}, oldsymbol{\gamma^*})$$

Model Parameters

Optimal Data Selection Strategy

- Exactly the parameter updating policy of training LMs
- \bullet Constrains the θ_t^* to be reachable with GD <u>under the optimal data selection</u>

#2: Target Condition

$$\left[\boldsymbol{\lambda}_t^* = \boldsymbol{\lambda}_{t+1}^* + \nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^* \right]$$
 Ideal gradient = Target + Learning dynamics

- λ_t^* : the ideal gradient of the high-quality data points.
 - "Compass" for high-quality data.
- Ideal gradient includes information of Target Loss and Learning Dynamics.

#3: Maximum Condition

$$egin{aligned} oldsymbol{\gamma}^* = rg \max_{oldsymbol{\gamma}} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} oldsymbol{\lambda}_{t+1}^* ^ op
abla l(x_n, oldsymbol{ heta}_t^*)
ight] \end{aligned}$$

Gradient of each sample

$$\sum_{t} \lambda_{t+1}^* oxedsymbol{ au} l_{n,t} < \sum_{t} \lambda_{t+1}^* oxedsymbol{ au} l_{m,t} < \sum_{t} \lambda_{t+1}^* oxedsymbol{ au} l_{k,t}$$

$$\Rightarrow \gamma_n < \gamma_m < \gamma_k$$

Examples with closer gradients to λ_t should have higher γ .

Summing up

Theorem 2.1 (PMP Conditions for Data Selection).

#1 Learning Condition
$$\boldsymbol{\theta}_{t+1}^* = \boldsymbol{\theta}_t^* - \eta \nabla L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*)$$

#2 Target Condition
$$\boldsymbol{\lambda}_t^* = \boldsymbol{\lambda}_{t+1}^* + \nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^*$$

#3 Maximum Condition
$$\gamma^* = \arg\max_{\gamma} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \top \nabla l(x_n, \boldsymbol{\theta}_t^*) \right]$$

Use <u>learning condition</u> to forward compute θ_0 to θ_T

forward Pass with #1:
$$\theta_0 \longrightarrow \theta_1 \longrightarrow \dots \longrightarrow \theta_T$$

#2 Target Condition $\boldsymbol{\lambda}_t^* = \boldsymbol{\lambda}_{t+1}^* + \nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^*$

#3 Maximum Condition $\gamma^* = \arg\max_{\gamma} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \top \nabla l(x_n, \boldsymbol{\theta}_t^*) \right]$

Use <u>Target Condition</u> to reverse compute λ_T to λ_0

forward Pass with #1:
$$\theta_0 \longrightarrow \theta_1 \longrightarrow \dots \longrightarrow \theta_T$$

reverse Pass with #2:
$$\lambda_0 \leftarrow \lambda_1 \leftarrow ... \leftarrow \lambda_T$$

#3 Maximum Condition
$$\gamma^* = \arg\max_{\gamma} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \top \nabla l(x_n, \boldsymbol{\theta}_t^*) \right]$$

Use Maximum Condition to solve the final γ

forward Pass with #1: $\theta_0 \to \theta_1 \to \dots \to \theta_T$ reverse Pass with #2: $\lambda_0 \to \lambda_1 \to \dots \to \lambda_T$ maximum γ with #3:

Iteratively Solving \(\gamma\) until convergence (Algorithm 1)

while γ not converged, do forward Pass with #1: $\theta_0 \to \theta_1 \to \dots \to \theta_T$ reverse Pass with #2: $\lambda_0 \leftarrow \lambda_1 \leftarrow \dots \leftarrow \lambda_T$ maximum γ with #3:

Equivalence to "Meta" Gradient Decent

- Optimizing the whole training process with "Meta GD"
- A training process can be viewed as an NN (vertically)

Solve γ with "Meta" GD

Iteratively Solving \(\gamma\) until convergence (Algorithm 1)

while γ not converged, do forward Pass with #1: $\theta_0 \to \theta_1 \to ... \to \theta_T$ reverse Pass with #2: $\lambda_0 \to \lambda_1 \to ... \to \lambda_T$ maximum γ with #3:

Solve γ with "Meta" GD

Iteratively Solving \(\gamma \) until convergence (Algorithm 1)

while γ not converged, do

Forward pass of "Meta" GD:

 $\theta_0 \longrightarrow \theta_1 \longrightarrow ... \longrightarrow \theta_T$

Backward pass of "Meta" GD:

 $\lambda_0 \leftarrow \lambda_1 \leftarrow \dots \leftarrow \lambda_T$

Step pass of "Meta" GD:

maximum γ with #3:

• Iteratively Solving γ (Algorithm 1)

while γ not converged, do

forward Pass with #1: $\theta_0 \longrightarrow \theta_1$ $\longrightarrow \theta_T$ reverse Pass with #2: $\lambda_0 \longleftarrow \lambda_1 \longleftarrow \lambda_T$

Forward and Reverse passes are computationally intensive!

(1) Solve γ on a small model (e.g., 140M) and data (e.g., 160M tokens)

- ① Solve γ on a small model (e.g., 140M) and data (e.g., 160M tokens)
- ② Fit γ with a data scorer (e.g., a 140M LM with a regression head)

- ① Solve γ on a small model (e.g., 140M) and data (e.g., 160M tokens)
- ② Fit γ with a data scorer (e.g., a 140M LM with a regression head)
- 3 Infer γ on the whole dataset (e.g., 100B tokens)

- (1) Solve γ on a small model (e.g., 140M) and data (e.g., 160M tokens)
- ② Fit γ with a data scorer (e.g., a 140M LM with a regression head)
- (3) Infer γ on the whole dataset (e.g., 100B tokens)

PMP-based Data Selection (PDS) is Efficient

Offline selection (~15h)

Pre-Training (~144h)

Experiment Setups

Training & Evaluation Setups

- Pre-training LMs from scratch
- Evaluate zero-shot performance

Data Setups

- Pre-Training data: CommonCrawl from Redpajama (100B tokens)
- Downstream loss $J(\theta)$: loss on LIMA (1k high-quality instruction-response pairs)
- Evaluation: 9 common NLP benchmarks: LAMBADA, Hellaswag, BoolQ, etc.

Performance Improvement

- Select 50B-token corpus from 125B-token corpus.
- Match the total training steps with the baselines (training computation)

	HS	LAMB	Wino.	OBQA	ARC-e	ARC-c	PIQA	SciQ	BoolQ	Avg.
				Model Si	ze = 470M	I				
Conventional	36.7	41.4	52.4	30.4	44.8	25.2	61.0	70.6	60.4	47.0
RHO-Loss	36.6	42.4	53.0	29.4	43.7	25.2	60.4	72.8	59.8	47.0
DSIR	36.4	42.6	51.7	29.8	46.0	24.7	61.0	72.0	55.8	46.7
IF-Score	36.6	41.8	53.4	29.6	44.7	25.1	60.8	68.8	58.7	46.6
PDS	37.9	44.6	52.3	29.8	46.5	25.8	61.8	73.8	61.4	48.2
				Model S	Size = 1B					
Conventional	39.9	47.6	52.4	30.6	49.3	26.4	63.1	73.7	60.9	49.3
RHO-Loss	39.8	47.0	53.0	30.8	48.0	26.4	62.9	71.1	61.0	48.9
DSIR	40.8	47.8	53.0	31.2	49.8	26.8	62.7	76.6	58.0	49.6
IF-Score	39.4	47.0	52.6	28.6	49.4	26.4	63.5	74.0	60.5	49.0
PDS	42.1	48.8	54.0	33.4	51.3	28.0	64.1	78.5	58.7	51.0

Extrapolation to 400B models on 15T tokens

Fitting the model loss curves with the Scaling Law

Extrapolating to 400B models on 10T tokens

$$L(N,D) = E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}$$

	N	$D \mid$	Conventional	PDS
GPT-3 [12]	175B	300B	2.882	2.872
Llama [72]	6.7B	1.0T	2.942	2.896
Llama 2 [73]	70B	2.0T	2.877	2.855
Llama 3.1 [21]	405B	15T	2.851	2.838

Computation Saving

2.0x acceleration on 1.7B models PDS is efficient and offline

◆ Select data once for all models

		FLOPs ($\times 10^{20}$)	Actual Time
PDS	Proxy γ -solver Data Scorer Data Selection		15.2 Hours 1.50 Hours 10.2 Minutes
	Pre-Training	5.1	144 Hours

Data Utilization Improvement

Performance improvement with limit data (50B tokens)

Pre-Training (w/o Data Selection)

Select 50% data, train for 2 epochs

Select 25% data, train for 4 epochs

Select 12.5% data, train for 8 epochs

Extrapolation with Scaling Laws

~1.8x reduction of data use

Conclusion

A novel perspective for Data selection: Optimal Control problem

- ◆ Good theoretical guarantees
- ◆ Efficient Implementation
- ◆ Sound empirical results

A rigorous, theory-driven alternative to the ad-hoc practices that currently dominate LM pre-training

Thanks!

- Paper: https://arxiv.org/abs/2410.07064
- GitHub: https://github.com/microsoft/LMOps/tree/main/data_selection
- HuggingFace: https://huggingface.co/Data-Selection

Paper: Code:

HF:

